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Estimates of diversification rates at the tips of a phylogeny provide a flexible approach for correlation analyses with multiple traits

and to map diversification rates in space while also avoiding the uncertainty of deep time rate reconstructions. Available methods

for tip rate estimation make different assumptions, and thus their accuracy usually depends on the characteristics of the underlying

model generating the tree. Here, we introduce MiSSE, a trait-free, state-dependent speciation and extinction approach that can

be used to estimate varying speciation, extinction, net diversification, turnover, and extinction fractions at the tips of the tree. We

compare the accuracy of tip rates inferred by MiSSE against similar methods and demonstrate that, due to certain characteristics

of the model, the error is generally low across a broad range of speciation and extinction scenarios. MiSSE can be used alongside

regular phylogenetic comparative methods in trait-related diversification hypotheses, and we also describe a simple correction to

avoid pseudoreplication from sister tips in analyses of independent contrasts. Finally, we demonstrate the capabilities of MiSSE,

with a renewed focus on classic comparative methods, to examine the correlation between plant height and turnover rates in

eucalypts, a species-rich lineage of flowering plants.
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Molecular phylogenies, when scaled in relation to time, are pow-

erful sources of data to understand the diversification dynam-

ics of organisms and have become crucial in multiple areas of

ecology and evolution (Wiens and Donoghue 2004). As the trees

themselves become larger, more robust, and increasingly com-

prehensive (e.g., Beaulieu and O’Meara 2018; Smith and Brown

2018), the statistical tools used to infer macroevolutionary pat-

terns from them also become more biologically realistic (e.g.,

Beaulieu and O’Meara 2016). Modeling the dynamics of lin-

eage origination and extinction through time has allowed us to

understand, for example, how shifts in pollination and disper-

sal strategies are connected to changes in diversification rates of

angiosperms (e.g., Lagomarsino et al. 2016; Vasconcelos et al.

2019; Reginato et al. 2020) or the role of environmental instabil-

ity in the diversification of several vertebrate groups (e.g., Harvey

et al. 2020; Morales-Barbero et al. 2021).

Recently, however, a renewed wave of criticisms regard-

ing these methods calls into question whether diversification

rates from time-calibrated trees of extant-only organisms should

even be estimated at all (Louca and Pennell 2020). While it is

true that phylogenies are often used to address problems be-

yond their capabilities (Losos 2011; Cooper et al. 2016; Uyeda

et al. 2018), there is still a considerable amount of informa-

tion that extant-only phylogenies can provide about the diver-

sification process (Helmstetter et al. 2022; Morlon et al. 2022).

For instance, O’Meara and Beaulieu (2021) demonstrated that

state-dependent speciation and extinction (SSE) models can

identify different likelihoods for the generating parameters of

trees with different topologies but identical lineages through

time plots. However, they also discuss how the uncertainty

around parameter estimates increases as one moves from tip to

root in the tree, due to the decreasing amount of information
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in ancestral rate reconstructions (O’Meara and Beaulieu

2021).

A solution, then, could be to continue to model diversifica-

tion dynamics, but focus only on rates estimated near the present

or at the tips of the tree, rather than deep in time. Tip rate es-

timates, also referred to as species-specific diversification rates

(Maliet et al. 2019), have additional advantages in their flexibil-

ity when testing for correlations between multistate discrete and

continuous traits (Harvey and Rabosky 2018; Title and Rabosky

2019) and for providing a straightforward way to map diversifi-

cation rates in space (e.g., Sun et al. 2020; Suissa et al. 2021).

Several methods for estimating tip diversification rates have been

proposed in the past decade (e.g., Jetz et al. 2012; Rabosky 2014;

Maliet et al. 2019), and they tend to provide different levels of ac-

curacy for the estimates depending on the underlying model gen-

erating the tree (Title and Rabosky 2019). There are also multiple

views on how to use tip rate estimates in trait-based correlation

analyses, depending on how the tip rates themselves were esti-

mated (Freckleton et al. 2008; Rabosky and Huang 2016; Maliet

et al. 2019). Of course, the underlying processes generating em-

pirical phylogenies are unknown, and therefore developing a flex-

ible method that estimates accurate tip rates under a broad range

of speciation and extinction scenarios is desirable.

Here, we formally describe MiSSE (“Missing State Speci-

ation and Extinction”), an extension of the SSE framework that

provides accurate estimates of various metrics of diversification

rates at the tips of a tree under various speciation and extinc-

tion scenarios. We also show how MiSSE estimates can be used

alongside regular phylogenetic comparative methods after a sim-

ple correction for pseudoreplication of tip rates, contributing to

its flexibility in tip correlation analyses. We compare the accu-

racy of MiSSE against other popular approaches for estimating

tip diversification rates and further demonstrate its capabilities

with an empirical example that examines the correlation between

turnover rates and plant height in eucalypts (Eucalypteae, Myr-

taceae), a diverse lineage of flowering plants. Finally, we argue

why focusing on tip estimates can be advantageous in testing

complex hypotheses of diversification and discuss some caveats

of this approach and possible ways forward for modeling diversi-

fication.

Materials And Methods
THE MISSE MODEL

State-dependent speciation and extinction models expand the

birth-death process to account for speciation (λ), extinction (μ),

and trait evolution (q, the transition rates between character

states), estimating parameters that maximize the likelihood of ob-

serving both the character states at the tips of the tree and the tree

itself (Maddison et al. 2007). SSE models were initially devel-

oped to overcome three main perceived shortcomings in the field:

(1) the need for greater flexibility in tests of key-innovation hy-

potheses, which, at the time, typically involved sister-clade com-

parisons that could only measure differences in net diversification

and assumed constant rates within the clades under comparison

(Barraclough et al. 1998); (2) the need to incorporate differences

in speciation and/or extinction rates associated with a particular

character state in analyses of trait and geographical range evo-

lution (Goldberg et al. 2010; Goldberg and Igic 2012; Ree and

Sanmartin 2018); and (3) the potentially confounding effects

of different transition and diversification rates when looking

at diversification or character evolution, respectively (Maddison

2006).

All discrete SSE models exist within the following general-

ized ordinary differential equations (corresponding to Equation

1a and b in FitzJohn 2012):

dEi

dt
= μi − (λi + μi +

∑
i �= j

qi j ) Ei (t ) + λiEi(t )2 +
∑
j �=i

qi jE j (t ) (1a)

dDi

dt
= −(λi + μi +

∑
i �= j

qi j ) Di (t ) + 2 λi Di (t ) Ei (t ) +
∑
j �=i

qi j D j (t ) (1b)

The probability Ei (t) is the probability that a lineage starting

at time t in state i leaves no descendants at the present day (t =
0), and Di (t) is the probability of a lineage in state i at time t

before the present (t > 0) evolved the exact branching structure

as observed.

With these ordinary differential equations, any number of

states can be included in an SSE model. For example, in

character-based models, such as BiSSE (“Binary-State Specia-

tion and Extinction”; Maddison et al. 2007), i and j represent

two observed states of a focal character (e.g., observed states

0 and 1). A potential issue in this case is that when comparing

a simple model where there is no variation in rates among states

against a model of trait-dependent diversification, there is almost

always strong support for a trait-dependent diversification pro-

cess in empirical settings (Maddison and Fitzjohn 2015; Rabosky

and Goldberg 2015). The HiSSE model (“Hidden-State Specia-

tion and Extinction”; Beaulieu and O’Meara 2016) partially cor-

rects this issue by harnessing the properties of hidden Markov

models to allow rate heterogeneity to depend not only on the fo-

cal trait but also on other factors that were not explicitly scored

as character observations at the tips (see also Caetano et al. 2018;

Nakov et al. 2019; Boyko and Beaulieu 2021, 2022). Thus, with

HiSSE, i and j represent the different observed and hidden state

combinations specified in the model (e.g., observed states 0 and

1, hidden states A and B).

Although hidden state SSE models make hypothesis testing

in diversification studies more realistic, existing SSE models are

still generally used to understand the correlation of a particular
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(a)

(b)

(c)

Figure 1. Diagrammatic representations of state-dependent speciation and extinction models that (a) use only observed trait data in

parameter estimation (e.g., BiSSE), (b) use both observed trait data and hidden states in parameter estimation (e.g., HiSSE,where observed

and hidden are coded as numbers and letters that are combined to yield a four-state system), and (c) use only hidden states in parameter

estimation (e.g., MiSSE).

observed trait or geographical range distribution and the diversi-

fication dynamics of a group. However, in reality, it is not a single

factor but, rather, a combination of circumstances that are respon-

sible for the heterogeneous diversification rates among clades in

a phylogenetic tree (Donoghue and Sanderson 2015; Nürk et al.

2020). Understanding heterogeneous processes that arise from

the effect of multiple traits on the dynamics of speciation, ex-

tinction, and trait evolution is one of the main utilities of hidden

Markov models in phylogenetic comparative methods (Caetano

et al. 2018).

It is natural, then, to completely drop the observed trait from

the analysis and focus only on the impact of the “unobserved”

traits, or the hidden states, in the diversification dynamics of a

clade. This is what our MiSSE model, an extension of the HiSSE

framework, is intended to do (see also Barido-Sottani et al. 2020

for a similar SSE extension in a Bayesian framework). MiSSE is

a direct extension of HiSSE, with the main difference between the

two models being that, with HiSSE, we have an observed char-

acter with states 0 or 1, as in BiSSE (Fig. 1a), and hidden states

A and B (Fig. 1b). Essentially, MiSSE operates in the same way
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but simply ignores the observed states altogether and performs

the calculations of the hidden rate classes directly (Fig. 1c).

The assignment of a particular hidden state to each tip is

based on probabilities of the data, which, in the case of MiSSE,

is just the structure of the tree. This process is similar to the

maximum likelihood calculations in other hidden state methods.

These calculations are described thoroughly in Caetano et al.

(2018), so here we provide only a brief overview. The first step

is to search for parameter values that maximize the probability of

observing the tree at the root by marginalizing over all possible

assignment of rate classes at internal nodes and along branches.

This search consists of a bounded stochastic simulated anneal-

ing algorithm, run for 5000 iterations, followed by a bounded

subplex routine that runs until the maximum likelihood is found.

Alternating between a stochastic optimization routine, followed

by a “greedy” hill-climbing routine, helps ease MiSSE away

from finding local optima.

Suppose that, in an iteration, rate class A has λ = 0.1 and

μ = 0.05, and rate class B has λ = 0.2 and μ = 0.1. The node

subtending the branch subtending a tip could have started in A

giving rise to an A or B, or it could have started in B giving rise to

an A or a B. Each of these scenarios has a probability associated

with them. The sister edge has the same set of scenarios and its

own set of probabilities. These probabilities are combined at the

nodes (which includes the speciation rate to account for the spe-

ciation event at a node) and carried down the tree in the same way

as in other SSE models. Once at the root, marginal probabilities

for whether the root is in A or B based on a set of rates can be

calculated, as well as the overall log-likelihood that these rates

produced the observed tree.

At this point, all other branches, nodes, and tips are assumed

to be in all possible states. The second step, then, is to take the

maximum likelihood estimation (MLE) of the rates and deter-

mine which of the states at a given node and given tip is more

likely than any of the other possible states. For that, MiSSE sim-

ply chooses a node (or tip), fixes it to be in rate class A, tra-

verses the tree, and calculates the overall likelihood. Then, it

does the same for that same node, but this time, it fixes it to

be in rate class B. At the end, MiSSE calculates the marginal

probabilities by dividing the probability that a node was in each

state divided by the sum of the probabilities across all states.

In that way, every tip and node have a probability of being in

both states A and B, but often one state will be more proba-

ble than the other. For example, in a clade where speciation oc-

curred more rapidly, the higher λ associated with B will be a bet-

ter fit to the shape of that part of the tree, and so the marginal

probabilities will reflect higher support for B. In another clade,

where speciation is slower, lower λ will be the better fit, so

the marginal probabilities will reflect the higher support for hid-

den state A in that part of the tree. In other clades, they may

be uncertain, given frequent transitions in and out each hidden

state.

Note that A and B are arbitrary labels that can and will

shift positions at the tips in different runs. What truly matters

is the parameter combination that underlies each label in each

run, which should not change their MLE between runs. Note also

that MiSSE is still a model of tree and character states like other

SSE models, so the topology matters to assign tips to the correct

(hidden) states. Because it uses data from the topology as well

as branch lengths, MiSSE likelihood can distinguish between

trees that have the same lineage through a time plot but differ-

ent topologies (O’Meara and Beaulieu 2021). Additionally, note

that, contrary to previous SSE models, transition rates (q) among

rate classes are always set to be equal. They are informed in the

output, but they have no direct interpretable biological meaning

such as the transition rates in BiSSE, which represent the fre-

quency of state changes among observed character states, or in

GeoSSE, which can be interpreted as the frequency of disper-

sal out of a biogeographic area. Our current implementation will

continue to treat these rates as fixed until it is clearer whether

transition rates are practically feasible in MiSSE. An implemen-

tation where transition rates are allowed to vary would be ideal

given that shifts between rate classes are likely to occur at dif-

ferent speeds throughout the evolution of a group. Differential

diversification rates have a major effect on the tree (since this af-

fects exponential growth of clades), while differential transition

rates are likely (but not guaranteed) to have a less substantial ef-

fect, so for now we use the data only to estimate differences in

the former.

MiSSE is available within the R package hisse (Beaulieu and

O’Meara 2016). Some details of MiSSE’s implementation differ

from other SSE models also implemented in hisse. These dif-

ferences are summarized in SM1 (Supplementary Material), and

readers are also encouraged to follow the example code available

as SM2 when using MiSSE for their empirical analyses.

COMPARING THE ACCURACY OF TIP RATE METRICS

ACROSS DIFFERENT SPECIATION AND EXTINCTION

SCENARIOS

We compare the accuracy of tip diversification rates estimated

by popular methods using a set of simulated trees extracted from

Title and Rabosky (2019) and Maliet et al. (2019). Title and Ra-

bosky (2019) used 5200 trees compiled from previous literature

and simulated under eight different models as a benchmark set

to test the accuracy of different tip rate metrics across a range of

speciation and extinction scenarios. For speed, we selected a ran-

dom sample of 10% of their original set of simulations, i.e., 521

trees, for our analyses. We then excluded trees simulated under

the “multiregime, constant-rate birth–death” of Meyer and Wiens

(2018) because those were represented by only two trees in our

4 EVOLUTION 2022



A FLEXIBLE METHOD FOR TIP RATE ESTIMATION

Table 1. Simulated trees used in comparisons between tip rate metrics.

Simulation model Number of trees Tree-size Source

Speciation rate evolves via diffusion
process

120 25–662 Rabosky (2010); Beaulieu and
O’Meara (2015); Rabosky (2016);
Title and Rabosky (2019)

Single- and multiregime, constant-rate
birth–death

18 9–3458 Mitchell et al. (2019)

Single-regime, constant-rate birth–death,
lambda uniform

100 100 Title and Rabosky (2019)

Single-regime, constant-rate birth–death 10 100 Mitchell and Rabosky (2017)
Single- and multiregime, constant-rate

birth–death
10 100 Moore et al. (2016)

Single-regime, constant-rate birth–death,
net diversification uniform

100 100 Title and Rabosky (2019)

Pure birth root regime, 1−4 discrete shifts
to diversity-dependent regimes

117 54–794 Rabosky (2014); Mitchell and
Rabosky (2017)

Single- and multiregime, constant-rate
birth–death

40 10–3157 Rabosky et al. (2017)

Rate changes at every speciation event,
constant extinction-fraction

32 100–105 Maliet et al. (2019)

set. From Maliet et al. (2019), we extracted 40 trees simulated un-

der the ClaDS2 scenario for comparison with the ClaDS model

available in the recent data-augmentation implementation (Maliet

and Morlon 2022). We then excluded five trees where the median

height of branch lengths was above a threshold of one trillion

units of time because they could be out of the numerical lim-

its for some methods (e.g., BAMM’s MCMC chains struggled to

reach convergence in those cases). Finally, seven additional trees

were excluded due to modeling limitations in one of the methods

(see details in SM3; Supplementary Material). The final dataset

comprises 547 trees of different sizes, although most of them are

< 500 tips (Table 1).

Six different tip-rate metrics were compared: DR statistics

(Redding and Mooers 2006), BAMM (Rabosky 2014), node den-

sity (ND; Freckleton et al. 2008), the inverse of terminal branch

length (TB; Steel and Mooers 2010), ClaDS (Maliet et al. 2019;

Maliet and Morlon 2022), and our MiSSE model. For MiSSE,

we summarized tip rates in the following ways: (1) tip rates es-

timated from the model with the overall lowest AICc (i.e., the

“best” model; MiSSEbest); and (2) tip rates estimated by averag-

ing all models according to their Akaike weight (MiSSEaverage)

(see SM3, Supplementary Material, for details on the settings for

other methods).

We followed the same statistical metric as Title and Rabosky

(2019), namely, we compared the mean absolute error, given by

the formula
∑Ni

i=1 |ratei − rateT RUEi | / N , and the RMSE is given

by
√∑Ni

i=1(ratei − rateT RUEi ) 2/ N , where i is a single tip and N

is the total number of tips in all trees of a given type of simulation.

In all cases, the lower the error values are, the more accurate the

metric. We assessed the accuracy of five parameters, speciation

(λ), extinction (μ), and the orthogonal transformations of these,

namely, net diversification (r = λ − μ), turnover (τ = λ + μ) and

extinction fraction (ε = μ/λ). Note that TB, ND and DR are non-

parametric (i.e., not based on an underlying model) and only es-

timate λ. We then used the function posthoc.kruskal.conover.test

from the R package PMCMR (Pohlert 2014) to perform a pair-

wise test for multiple comparisons of mean rank sums and cal-

culate whether errors are significantly different between metrics,

assuming a significance value of p < 0.05.

EMPIRICAL EXAMPLE: PLANT HEIGHT AND

TURNOVER IN EUCALYPTS

We demonstrate the capabilities of MiSSE estimates for analyses

of tip correlation with an empirical example. Body size is con-

sidered an important trait in studies of animal evolution (Cooper

and Purvis 2010), and it has been interpreted as a potential corre-

late of diversification rates in vertebrates (Cope’s rule; FitzJohn

2010). A similar argument can be made for plants (Boucher et al.

2017). Through a complex link between rates of molecular evolu-

tion, fecundity, and population size, life span and generation time

are expected to be negatively correlated with the number of spe-

ciation and extinction events on a per time basis (Stebbins 1974;

Petit and Hampe 2006); i.e., slower turnover rates. Although

these correlations are expected in theory, surprisingly few studies

have compared them in practice using model-based approaches

(e.g., Boucher et al. 2020). The MiSSE framework allows us to

easily test this correlation by using regular comparative phyloge-

netic methods and tip rates as a response variable.
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We examined turnover rates in relation to plant height, a

proxy for lifespan (Westoby 1998), in eucalypts, one of the most

distinctive components of the Australian landscape (Wilson et al.

2005). Eucalypts are members of the tribe Eucalypteae, in the

flowering plant family Myrtaceae, and a group that includes some

of the tallest trees in all angiosperms (e.g., Eucalyptus regnans

can reach up to 120 m height) (Wilson et al. 2005; Nevill et al.

2010). Eucalypts are also unusual for being considered a rela-

tively speciose (c. 800 species) lineage of trees. It is thought that

the tree habit tends to decrease speciation rates, which is offered

as reason that clades comprised of predominantly tree growth

forms are frequently found to be less diverse than their herba-

ceous or shrubby relatives (Petit and Hampe 2006). However,

many eucalypt species are also large shrubs to treelets between

1.5 and 5 m in height (EUCLID 2015), which led to the hypothe-

sis that the radiation is driven primarily by the smaller representa-

tives of the clade (Petit and Hampe 2006). Here, we test this idea

by contrasting tip turnover rates with plant height in this diverse

clade of angiosperms.

We used the “ML1” time-calibrated phylogenetic tree from

Thornhill et al. (2019), which covers 716 out of the c. 800 species

of eucalypts. We then collected data on plant height for 673 spec-

ies available at EUCLID Eucalypts of Australia Edition 4 (2015)

(EUCLID 2015). All measurements represent plant maximum

height and are given in meters. We use the default implementa-

tion of MiSSE (stop.deltaAICc = 10 and chunk.size = 10) to esti-

mate tip turnover rates in Eucalypteae, pruning redundant models

with the function PruneRedundantModels. Next, we estimated tip

turnover rates by averaging all models according to their AICc

weights with the function GetModelAveRates.

To test correlations between plant height and tip turnover

rates, we used the function TipCorrelation, which performs a

regression-through-the-origin of positivized phylogenetic inde-

pendent contrasts (PICs, Felsenstein 1985) between tip rates and

a continuous trait. This function also gives the option of pruning

out PICs from two tips that are sisters to each other and share the

same branch length to the direct ancestral node (i.e., “cherries”)

before regressions. We reasoned that because these sister tips the-

oretically inherit the exact same rate class probabilities in MiSSE,

they may (1) present identical tip rates, forcing the slope of the

regression to be close to 0 since their PICs will be 0, and therefore

(2) constitute pseudoreplicates in the analyses. Note that in this

approach, we prune PICs and not individual sister tips. Pruning

tips might not be adequate because they would affect all other PIC

calculations in the tree; they can also make the results sensitive

to which tip is pruned and give less information for computing

contrasts deeper in the tree. All functions mentioned above are

available in the R package hisse (Beaulieu and O’Meara 2016).

Rates and maximum plant height were log scaled before anal-

yses so that they conformed with Brownian motion evolution

(Felsenstein 1985; Garland et al. 1992).

Results
SIMULATION STUDIES

Comparisons between tip rate metrics using simulated data show

that, in general, MiSSE estimates accurate tip rates across a range

of speciation and extinction scenarios (Fig. 2). We present the re-

sults for the mean absolute error, although the RMSE results are

practically the same (SM4; Supplementary Material). Our results

show that TB is significantly less accurate than other methods in

all simulation scenarios, and in eight out of the nine simulation

scenarios, there was no significant difference in error measure-

ments between ND and DR. In all simulated scenarios, the re-

sults show that the model-based approaches MiSSE, BAMM and

ClaDS tended to be significantly (p < 0.01) more accurate than

the nonparametric methods TB, ND, and DR for speciation rates,

the only parameter estimated by the latter three metrics (see SM5;

Supplementary Material for all pairwise comparisons).

The accuracy among the three model-based approaches for

the five diversification parameters estimated at the tips varies

depending on the model used to generate the simulated tree.

Significant differences in accuracy are observed for extinction

fraction in the “speciation rate evolves via diffusion process”

scenario (Fig. 2a), where ClaDS is significantly more accurate

(p = 0.04) than MiSSEaverage and BAMM, but not than MiSSEbest

(p = 0.32). Significant differences in accuracy between the esti-

mates of the MiSSEbest model and the AICc-weighted average of

the MiSSEaverage model were not observed in any other simulated

scenario; therefore, the two results are henceforth treated as a

single MiSSE category. In both the “single-regime, constant-rate

birth–death, lambda uniform” (Fig. 2c) and the “single-regime,

constant-rate birth–death, net diversification uniform” (Fig. 2f)

scenarios, ClaDS estimates for speciation at the tips are signif-

icantly less accurate (p < 0.01) than the other model-based ap-

proaches. ClaDS estimates also perform significantly worse than

MiSSE (p < 0.01 and p = 0.049 when compared to MiSSEbest)

for estimates of net diversification and turnover rates in those sce-

narios. BAMM and ClaDS are significantly more accurate than

MiSSE for speciation in the “Pure birth root regime, 1−4 dis-

crete shifts to diversity-dependent regimes” scenario (p < 0.01;

Fig. 2g). In the same scenario, ClaDS also tends to be more ac-

curate than other methods for extinction rates (p < 0.01) and

BAMM for net diversification rates (p < 0.01), but BAMM is also

significantly less accurate for turnover rates (p < 0.01) than the

other methods in this scenario. ClaDS is significantly more accu-

rate than BAMM for estimates of extinction fraction in trees sim-

ulated under the model “rate changes at every speciation event,
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Figure 2. Boxplots showing the distribution of mean absolute error between true and estimated tip rates using five previously described

metrics and our MiSSE model. Each data point corresponds to the mean absolute error between all tips in one tree. λ = speciation rate,

μ = extinction rate, τ = turnover rate, r = net diversification rate, and ε = extinction fraction.
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(a)

(b)

(c)

Figure 3. Comparison between maximum plant height and tip turnover rates estimated by MiSSE in Eucalypteae. (a) MiSSE turnover

rates at the tips; (b) Maximum plant height in meters. Warmer colors indicate higher values in both cases. (c) Regression through the

origin between PICs of MiSSE turnover rates and plant height, with PICs from sister tips included and pruned. Solid line: smoothed line

using the loess method; dashed line: regression line.

constant extinction fraction” (p < 0.01; Fig. 2i) but does not sig-

nificantly differ from MiSSE for any parameter in that scenario.

Tip-correlation between plant height and

turnover

Our empirical example using tip rate correlations with MiSSE

shows that, despite the idea that smaller plants have driven the

radiation in eucalypts, maximum plant height appears uncorre-

lated with turnover rates across the tips of the tree (R2 < 0.001,

Fig. 3c). The general lack of correlation is mainly because (1)

higher turnover rates are not always restricted to clades of small

shrubs and treelets, as seen by comparing the distribution of tip

rates and plant height along the tips of the tree (Fig. 3a,b); and (2)

plant height (Fig. 3b) appears to be a much more labile trait than

turnover rates (Fig. 3a). We note that pruning PICs from sister

tips from the tree minimally changes the slope of the regression

line in this example, and it does not change our main conclusion

that turnover rate and plant height are likely uncorrelated in euca-

lypts, given that contrasts of maximum plant height explain less

than 0.1% of the contrasts of turnover. In any event, the inclusion

of PICs from sister tips can force the slope of the PIC regression

toward 0 in other tip rate comparisons, and therefore, they should

be pruned before analyses.

Discussion
MISSE AS A FLEXIBLE MODEL-BASED APPROACH TO

ESTIMATE TIP DIVERSIFICATION RATES

Here, we describe our “trait-free” MiSSE framework and show

how it can be used to estimate accurate diversification rates at the

tips of the tree. Our results show that the difference in accuracy

in parameters estimated by averaging all MiSSE models or using

only the best MiSSE model seems to be minimal and may depend

on the tree (Fig. 2). However, as discussed in previous publica-

tions (Beaulieu and O’Meara 2016; Caetano et al. 2018), the user

is strongly encouraged to focus mainly on parameter estimation

rather than which model fits “best” when using MiSSE, since the

former is more informative about the biology of a clade. We also

note that although extinction fraction and turnover are sometimes

treated as synonymous in the literature (see SM6, Supplementary

Material, for a short terminology survey), we use turnover rate

as an explicit measure of events per unit of time and a param-

eter that is orthogonal to extinction fraction. We emphasize this

difference because many diversification hypotheses may be bet-

ter described by turnover rates rather than net diversification or

extinction fraction (e.g., Vrba 1993; Vasconcelos et al. 2022; our

empirical example). Additionally, given that extinction and spe-

ciation should tend to correlate through time (Marshall 2017), net
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diversification should tend to approach 0. In those scenarios, and

as long as extinction is different from 0, turnover can naturally

become a better metric for understanding diversification dynam-

ics nuances than its isolated components. We note, however, that

when the extinction rate is equal to 0, the turnover rate collapses

into the speciation rate (i.e., there is no turnover). We also note

that our concept of turnover is different from the one used in the

island biogeography literature (e.g., Simberloff 1974).

Key differences between MiSSE and analogous methods are

highlighted by our analyses of simulated data. Although esti-

mates from the three model-based approaches, MiSSE, BAMM,

and ClaDS, tend to provide generally accurate estimates of diver-

sification parameters at the tips, the three methods make very dif-

ferent assumptions. BAMM is based on inferences of discrete rate

shifts, so that all tips after a shift inherit a similar rate (Rabosky

et al. 2014). ClaDS, on the other hand, assumes that changes in

diversification dynamics occur at every speciation event so that

the estimates at the tips are allowed to be highly heterogeneous

in relation to one another (Maliet et al. 2019). MiSSE may also

have some shift-like properties, as in BAMM, in areas where the

probabilities of being in different rate classes change abruptly.

However, because at every moment in the tree, including at the

tips, there is a combined probability of being in all possible rate

classes, the evolution of diversification rates becomes smoother,

allowing it to pick up some rate heterogeneity at the tips, as in

ClaDS. Closely related tips do have similar rates because it is

likely that they will be in the same rate class, but they do not

inherit the absolute same rate.

A visual inspection of individual results (Fig. 4; all plots

in SM7, Supporting Information) shows that differences in ac-

curacy observed in our comparisons probably result from these

operational differences between model-based approaches. For in-

stance, because BAMM works with discrete shifts, this method

tends to be more accurate when the true model assumes that few

large discrete shifts of diversification rates occurred in the tree. In

those scenarios, models such as MiSSE and ClaDS may perform

comparatively worse because they may infer rate heterogeneity

where there is none (Fig. 4d). On the other hand, BAMM can

underestimate rate heterogeneity when the true model produces

highly heterogeneous tip rates in the tree. In those cases, even if

the mean error is low, this method may fail to capture rate vari-

ation in small clades with particularly high or particularly low

rates (Fig. 4a,c). Similarly, ClaDS may overestimate variation

in scenarios where rate heterogeneity is nonexistent, resulting in

higher error (Fig. 4b). Because MiSSE works as an intermedi-

ate between BAMM and ClaDS, we argue that it can become

a model-based approach that is more flexible in identifying ar-

eas of rate heterogeneity or homogeneity at the tips of the tree.

Importantly, even in scenarios where MiSSE is less accurate, it

tends to capture areas with faster and lower rates in the tree cor-

rectly. In “diversity dependent” scenarios, for example, MiSSE

may be less accurate because it can overestimate speciation rates

of clades with comparatively higher speciation rates, since it does

not explicitly allow speciation rates to slow down along a given

terminal branch (as in BAMM). However, it tends to be similar

to other methods in identifying where variation in rates occurs

(Fig. 4d).

PLANT HEIGHT AND TURNOVER RATES ARE

UNCORRELATED IN EUCALYPTS

Our empirical analysis demonstrated that the correlation between

plant height and turnover rates is weak within Eucalypteae. The

use of plant height as a proxy for longevity is common in plants,

but it may be that plant height is not the best proxy for longevity

in eucalypts. Tall eucalypt trees are often native to productive en-

vironments with fertile soils (Pryor 1976; Thornhill et al. 2019),

and it may be that they present fast life cycles for their size, as

observed in other parts of the world where soils are also fertile

(Russo et al. 2008). In fact, many eucalypt trees are known to be

fast-growing plants (e.g., Barnard and Ryan 2003; Almeida et al.

2004), and fast growth is linked to higher mortality through the

growth-survival trade-off hypothesis (Reich 2014), which could

potentially lead to higher turnover rates even in lineages of tall

trees (Baker et al. 2014). If that is the case, perhaps plant height

is not the trait that best captures the variation that we sought to

explore in our hypothesis. Other proxies, such as leaf mass area

and seed size (Westoby 1998; Wright et al. 2004), may be a better

proxy of longevity in these scenarios and should also be tested.

Alternatively, if plant height is, in fact, a good proxy for

longevity in eucalypts, it may be that longevity is generally un-

correlated with turnover in the clade. A similar trend of uncorre-

lated body size and speciation rates has been observed in other

groups (FitzJohn 2010; Boucher et al. 2020), but it is difficult to

ascertain if the lack of correlation is a particularity of the groups

that have been analyzed thus far or a general rule. Given the het-

erogeneity of evolution, identifying what is a rule and what is an

exception in macroevolution requires analyses of multiple natu-

ral replicates. Similar tests in several clades would be ideal to

rule out this possibility. A different approach would be to use

QuASSE (FitzJohn 2010) to construct a model of turnover and

height; the disadvantage of this is the need to model the rela-

tionship and the (current) impossibility of including additional

observed or unobserved factors.

One benefit of MiSSE (and similar methods) is that even

though our hypothesis was not supported, we still have new in-

formation about the tips: turnover rate (and the other diversifica-

tion parameters if one wishes). In the same way that looking at

the correlation of two traits may generate new hypotheses to test

(Boyko and Beaulieu 2021), having estimates of turnover rate at
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(a) (b)

(c) (d)

Figure 4. A comparison between rates estimated using different model-based approaches (colored dots, warmer colors indicate higher

values) and true rates (gray dots) at the tips of the tree in four different simulated scenarios: (a) “rate changes at every speciation event”;

(b) “speciation rate evolves via diffusion process”; (c) “single-regime, constant-rate birth–death, lambda uniform”; (d) “pure birth root

regime, 1−4 discrete shifts to diversity-dependent regimes”.
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tips as in Figure 3 may also lead to new ideas about the factors

leading to higher turnover rates in some eucalypts.

BEST PRACTICES IN TIP RATE ESTIMATION

MiSSE is intended to be used to estimate diversification rates at

the tips of the tree. Tip rates are, technically, an emergent property

of how diversification dynamics are modeled along the branches

of the tree (Freckleton et al. 2008; Title and Rabosky 2019).

However, rate estimates are not unique per tip species, so species

should not be analyzed in isolation. In other words, a tip with an

extinction fraction of 0.9, for instance, does not necessarily indi-

cate that that tip is about to go extinct but rather that many closely

related species are relatively short lived in comparison to the rest

of the tree. Tip rates can then be seen as a “snapshot” of the di-

versification potential of the species in a clade. In the MiSSE

framework, this diversification potential may be interpreted as

the combined effect of the many (hidden) states evolving in the

tree, which are represented by the different rate classes.

From a mathematical standpoint, there is an advantage in

using tip rates because it is at the tips where the certainty around

the probability of being in a particular rate class is the highest

(O’Meara and Beaulieu 2021). The certainty around these prob-

abilities decreases as one moves toward the root of the tree, so

the ability to point out changes in rate classes also decreases. Of

course, the model does use information from the whole phylo-

genetic tree in the calculations of tip rates, but as one moves

toward the present in the tree, more information is available to

reconstruct those rates, and thus, we are more likely to be certain

about the probabilities of being in different rate categories (see

O’Meara and Beaulieu 2021).

The intuitive question that follows is how far back in the

past one can go to interpret how the observable diversification

potential at the tips came to be and how far into the future can

we use them to make predictions about how clades will diver-

sify. The answer is, again, not straightforward and may depend

on the size and age of the phylogenetic tree under analysis. Tip

rates will not be able to tell us about mass extinction events

deep in the past, as these are arguably only measurable from

the fossil record (Barnosky et al. 2011), but they may represent

a good reflection of diversification dynamics above the species

level in time slices close to the present. We therefore recom-

mend great caution with literal interpretations of rate classes deep

in time. That is why MiSSE can “paint” the averaged rate re-

construction along the branches of the tree (i.e., with the func-

tion plot.misse.states in the R package hisse), inferences of rates

through time should not be interpreted literally. The “painting”

should be used just to visualize the rates inferred with MiSSE

and should not be used to support narratives of past diversi-

fication dynamics for a group. Interpreting past rates is risky

given limited information. Similarly, modern drivers of diversi-

fication dynamics (climate change, invasive species, habitat de-

struction, and more), which affect extinction rates at present, will

not be reflected in the rate estimates returned by MiSSE or similar

methods.

Another issue is the nonindependence of the tip rates. The

identical rates for sister tips have been discussed above, but even

nonsister tips may have somewhat correlated rates. It is impor-

tant to realize that although a phylogenetic model was used in

the estimation of tip rates, they themselves are not corrected for

phylogeny, which is the reason we used independent contrasts

above to compare turnover and plant height. There is also lim-

ited information: a resolved tree of 100 taxa has 198 edges. Al-

though MiSSE, BAMM, ClaDS, and other methods give 100 tip

estimates, there is not enough information to take each one as

known with great certainty or to draw a strong conclusion based

on a rate shared by a few taxa.

CAVEATS AND PERSISTENT ISSUES IN MODELING

DIVERSIFICATION DYNAMICS

Tip diversification rates are advantageous for their flexibility in

trait-related diversification analyses and for avoiding the uncer-

tainty of rate reconstructions in deep time. However, there are

several caveats that users should consider when using these meth-

ods, including MiSSE: (1) Clade-specific sampling fraction was

found to lead to an incorrect likelihood behavior in any diversi-

fication method despite its appeal (Beaulieu 2020). Contrary to

other similar methods, MiSSE deliberately does not include an

implementation for the clade-specific sampling fraction, so all

sampling fractions are global, and only one sampling fraction is

given for the whole tree. Imputation using stochastic polytomy

resolvers can work as an alternative solution when dealing with

incomplete phylogenies (e.g., Chang et al. 2020; but see Rabosky

2015) (2) How species are defined is the most relevant when look-

ing at tip rates. For diversification rate models, the data come

from the distribution of branching events across the phylogeny.

Since most of these events are nearer the present, lumping and

splitting taxonomic entities at the species level will have a greater

impact on tip-rate estimation. We suspect that the methods dis-

cussed herein are particularly sensitive to taxonomic subjectivity.

(3) There may still be issues related to ascertainment bias and un-

derestimation of extinction rates (Beaulieu and O’Meara 2018).

In that sense, the larger and broader taxonomic sample one uses to

test diversification hypotheses, the more biologically realistic ex-

tinction rates will tend to be. Ideally, one would be able to correct

the extinction estimates in smaller trees, but that is still not pos-

sible with the current implementation of MiSSE or in any other

model we are aware of. Therefore, even though extinction rates

are estimated accurately relative to the simulated data, they may

still be biologically unrealistic in small and young trees. (4) Fi-

nally, given that these models do not account for mass extinction
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events, it is unclear what impact such events will have on tip-rate

estimation in any approach currently available.

Conclusions
Time-calibrated phylogenetic trees have been important sources

of data to understand fundamental aspects of the evolution of or-

ganisms. MiSSE provides a novel tool to explore them, and its

flexibility in estimating accurate tip rates across a broad range

of speciation and extinction scenarios makes MiSSE a powerful

alternative for diversification analyses with correct likelihoods.

There remain many caveats and cautions about its use, but it is an

additional tool to understand diversification processes, including

a focus on parameters of perhaps great biological relevance, such

as turnover rate. We suggest that tip rates estimated by MiSSE

will be useful to several questions that were previously addressed

by other SSE models. Its versatility is appealing to explore inte-

grative questions linking traits, geographical range distribution,

or both in time slices close to the present.
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